Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
IJID Reg ; 6: 177-183, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2220810

ABSTRACT

Background: After COVID-19 arrived in New Zealand, a national system was developed to improve the efficiency of contact tracing. The first outbreak was followed by a period of 'COVID-19 elimination', until a community outbreak occurred in August 2020. We describe the characteristics of cases and their contacts during this outbreak, focused on the results of contact tracing. Methods: COVID-19 case data from the national surveillance database were linked to contacts from the national contact tracing database. Demographic and clinical characteristics of cases, number of contacts, and timeliness of contact tracing were analysed by ethnicity. Findings: Most of the 179 cases were Pacific people (59%) or Maori (25%), living in areas of high socioeconomic deprivation, who had higher rates of comorbidity and accounted for almost all (21/22) hospitalisations, all 8 ICU admissions and all 3 deaths. Only 6% belonged to the European majority ethnic group. Of 2,528 registered contacts, 46% were Pacific, 14% Maori and 19% European. Only contacts that were reached were registered. Overall, 41% of contacts were reached within 4 days of onset of disease of the case, which was significantly lower for Pacific (31%) than for other ethnic groups. Interpretation: Our findings confirm the greater health burden that ethnic minorities face from COVID-19. The significant delay in the timeliness of care for Pacific people shows that the public health response was inequitable for those at highest risk. Tailored public health responses and better registration of marginalised groups are necessary to provide better access to services and to improve insights for optimal future outbreak management.

4.
Lancet Reg Health West Pac ; 15: 100256, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1364342

ABSTRACT

Background: COVID-19 elimination measures, including border closures have been applied in New Zealand. We have modelled the potential effect of vaccination programmes for opening borders. Methods: We used a deterministic age-stratified Susceptible, Exposed, Infectious, Recovered (SEIR) model. We minimised spread by varying the age-stratified vaccine allocation to find the minimum herd immunity requirements (the effective reproduction number Reff<1 with closed borders) under various vaccine effectiveness (VE) scenarios and R0 values. We ran two-year open-border simulations for two vaccine strategies: minimising Reff and targeting high-risk groups. Findings: Targeting of high-risk groups will result in lower hospitalisations and deaths in most scenarios. Reaching the herd immunity threshold (HIT) with a vaccine of 90% VE against disease and 80% VE against infection requires at least 86•5% total population uptake for R0=4•5 (with high vaccination coverage for 30-49-year-olds) and 98•1% uptake for R0=6. In a two-year open-border scenario with 10 overseas cases daily and 90% total population vaccine uptake (including 0-15 year olds) with the same vaccine, the strategy of targeting high-risk groups is close to achieving HIT, with an estimated 11,400 total hospitalisations (peak 324 active and 36 new daily cases in hospitals), and 1,030 total deaths. Interpretation: Targeting high-risk groups for vaccination will result in fewer hospitalisations and deaths with open borders compared to targeting reduced transmission. With a highly effective vaccine and a high total uptake, opening borders will result in increasing cases, hospitalisations, and deaths. Other public health and social measures will still be required as part of an effective pandemic response. Funding: This project was funded by the Health Research Council [20/1018]. Research in context.

5.
Emerg Infect Dis ; 27(5): 1317-1322, 2021 05.
Article in English | MEDLINE | ID: covidwho-1202381

ABSTRACT

Real-time genomic sequencing has played a major role in tracking the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contributing greatly to disease mitigation strategies. In August 2020, after having eliminated the virus, New Zealand experienced a second outbreak. During that outbreak, New Zealand used genomic sequencing in a primary role, leading to a second elimination of the virus. We generated genomes from 78% of the laboratory-confirmed samples of SARS-CoV-2 from the second outbreak and compared them with the available global genomic data. Genomic sequencing rapidly identified that virus causing the second outbreak in New Zealand belonged to a single cluster, thus resulting from a single introduction. However, successful identification of the origin of this outbreak was impeded by substantial biases and gaps in global sequencing data. Access to a broader and more heterogenous sample of global genomic data would strengthen efforts to locate the source of any new outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Disease Outbreaks , Genomics , Humans , New Zealand/epidemiology
6.
Emerg Infect Dis ; 27(3): 687-693, 2021 03.
Article in English | MEDLINE | ID: covidwho-1007034

ABSTRACT

Since the first wave of coronavirus disease in March 2020, citizens and permanent residents returning to New Zealand have been required to undergo managed isolation and quarantine (MIQ) for 14 days and mandatory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of October 20, 2020, of 62,698 arrivals, testing of persons in MIQ had identified 215 cases of SARS-CoV-2 infection. Among 86 passengers on a flight from Dubai, United Arab Emirates, that arrived in New Zealand on September 29, test results were positive for 7 persons in MIQ. These passengers originated from 5 different countries before a layover in Dubai; 5 had negative predeparture SARS-CoV-2 test results. To assess possible points of infection, we analyzed information about their journeys, disease progression, and virus genomic data. All 7 SARS-CoV-2 genomes were genetically identical, except for a single mutation in 1 sample. Despite predeparture testing, multiple instances of in-flight SARS-CoV-2 transmission are likely.


Subject(s)
Aircraft , COVID-19 , Quarantine , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/transmission , Humans , Masks , New Zealand , Physical Distancing , SARS-CoV-2/classification , United Arab Emirates
7.
Nat Commun ; 11(1): 6351, 2020 12 11.
Article in English | MEDLINE | ID: covidwho-974936

ABSTRACT

New Zealand, a geographically remote Pacific island with easily sealable borders, implemented a nationwide 'lockdown' of all non-essential services to curb the spread of COVID-19. Here, we generate 649 SARS-CoV-2 genome sequences from infected patients in New Zealand with samples collected during the 'first wave', representing 56% of all confirmed cases in this time period. Despite its remoteness, the viruses imported into New Zealand represented nearly all of the genomic diversity sequenced from the global virus population. These data helped to quantify the effectiveness of public health interventions. For example, the effective reproductive number, Re of New Zealand's largest cluster decreased from 7 to 0.2 within the first week of lockdown. Similarly, only 19% of virus introductions into New Zealand resulted in ongoing transmission of more than one additional case. Overall, these results demonstrate the utility of genomic pathogen surveillance to inform public health and disease mitigation.


Subject(s)
COVID-19/epidemiology , Genome, Viral/genetics , Genomics/methods , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , Female , Geography , Humans , Infant , Infant, Newborn , Male , Middle Aged , New Zealand/epidemiology , Pandemics , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/physiology , Whole Genome Sequencing/methods , Young Adult
8.
N Z Med J ; 133(1521): 28-39, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-807838

ABSTRACT

AIMS: There is limited evidence as to how clinical outcomes of COVID-19 including fatality rates may vary by ethnicity. We aim to estimate inequities in infection fatality rates (IFR) in New Zealand by ethnicity. METHODS: We combine existing demographic and health data for ethnic groups in New Zealand with international data on COVID-19 IFR for different age groups. We adjust age-specific IFRs for differences in unmet healthcare need, and comorbidities by ethnicity. We also adjust for life expectancy reflecting evidence that COVID-19 amplifies the existing mortality risk of different groups. RESULTS: The IFR for Maori is estimated to be 50% higher than that of non-Maori, and could be even higher depending on the relative contributions of age and underlying health conditions to mortality risk. CONCLUSIONS: There are likely to be significant inequities in the health burden from COVID-19 in New Zealand by ethnicity. These will be exacerbated by racism within the healthcare system and other inequities not reflected in official data. Highest risk communities include those with elderly populations, and Maori and Pacific communities. These factors should be included in future disease incidence and impact modelling.


Subject(s)
Betacoronavirus , Coronavirus Infections/ethnology , Ethnicity/statistics & numerical data , Health Status Disparities , Life Expectancy/ethnology , Native Hawaiian or Other Pacific Islander/statistics & numerical data , Pneumonia, Viral/ethnology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coronavirus Infections/mortality , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , New Zealand , Pandemics , Pneumonia, Viral/mortality , SARS-CoV-2 , Survival Rate , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL